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Semiempirical wide-range equations of state of granite and water based on resolution of the pressure and 

energy into a cold component and thermal electronic and nuclear components are presented. The thermal 

electronic component is calculated using the Thomas--Fermi model, which makes it possible to describe both 

thermal ionization and ionization by pressure. Evaporation and dissociation are aUowed for by introducing 

the corresponding terms into the free energy. The condensed state is described within the framework of the 

Debye approximation. The cold isotherm is constructed with allowance for available experimental data. 

Wide-range equations of state (ESs) that realistically describe thermodynamic characteristics of a substance 

in a wide region of a phase diagram containing segments of both the condensed and gaseous states and that allow 

for the processes of dissociation and ionization are required in numerical modeling of gas-dynamic problems of 

high-speed impact. They include problems associated with the creation of meteorite defense, the study of meteorite 

craters, the origin of planetary atmospheres, possible consequences of the fall of large nonterrestrial objects onto 

the earth, etc. In these processes, the substance goes through stages from the condensed state through evaporation, 

dissociation, and ionization to a rarefied gaseous state. The need for correct allowance for the interparticle 

interaction renders a successive theoretical description of the equation of state for the substance impossible. 

Therefore, in calculations, we have to consider semiempirical models containing reasonable functional dependences 

specified in advance for thermodynamic parameters and coefficients whose selection enables us to describe with a 

certain degree of accuracy the available experimental thermodynamic data. Models of equations of state of a 

substance are reviewed in detail in [ 1 ]. Among more recent models, we should note an ES for water that is adequate 

up to temperatures of 60,000 K and pressures of 4 GPa [2 ]. 
i 

In the present work, use is made of an additive approximation developed for rocks in [3, 4 ] and for water 

in [5 ]. To construct the equation of state, we employ resolution of the pressure and energy into a cold component 

and thermal nuclear and electronic components: 

e fp, T) = t'co o fp) + e k (p, T) T) ,  

E (t9, T) = Ecold (t9) + E k (/9, T) + E e (/9, T). 

To calculate Pe and E e, we use the results of calculations by the Thomas-Fermi model [6 ] for an average charge 

Z = 10 that is the same for both water and the main component of granite SiO2. In what follows, we will consider, 

as the ES of granite, the ES of its main component. 

The free energy of the nuclear component of the substance is written as 

F k = Fcond + N k T l n  (1 + Zll) 1/nl - NkTIn  (1 + z22) l/n2 

The second term corresponds to evaporation, and the third term to dissociation of the molecules. If T is such that 

the substance evaporated completely, then 
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Eva p = Fcond + NkT  In z 1 (1) 

on condition tha t  z I >> 1 in developed evaporat ion.  Similarly to zl, the expression for z 2 is de te rmined  from the 

relation 

Fdi s = Eva p + NkT In z 2 , (2) 

which cor responds  to complete dissociation of the molecules of the substance. 

In  what  follows, the ESs of SiO2 a n d  water  are considered separately.  

Grani te .  T h e  pressure on the cold i so therm for SiO2 when p < P0K is specified in the form 

Pcold = A (6 m - 6 n) , 6 = P/POK" 

The paramete rs  A and m are determined f rom the relation 

d 2 
Pcola (Po) = c 

and the condit ion of equality of the work of compression from p = 0 to p -- P0K to the subl imation energy. We took 

5 /3  for n. T h e n  m -- 3.115 and A -- 2.48- 10 l~ Pa. For compressions that are larger than  uni ty  but smaller than 

three we used a cold isotherm that allows for  the experimental  data  of [7 ], which for large compressions was joined 

to the cold i so therm of the T h o m a s - F e r m i  model  with corrections calculated for the average charge Z = 10. 

Since the  critical temperature  of SiO2 is almost an order  of magnitude larger than  the Debye temperature  

00 (00 = 600 K) unde r  normal conditions, to determine zl from Eq. (1) the expression 

9 

 cond N T,n [ZeSiO2 

is used for Fcond, which agrees with the Einstein model, which is a good approximation at high temperatures.  

Considering the  vibrations and rotation of a molecule in the classical approximation,  for the free energy of the 

vapor we obtain  

'2a-r, Msio2kT] 3/2 eV 8.Tr,2jT T 4 

Fva p = - NkT In h2NA ) ~ -  2h ~ 010203 ZesiO 2 , 

where 0t = 1351 K; 02 = 603 K; 03 = 1780 K; Msio2 is the molecular weight; J = 1.28.10 -45 k g - m  2. If we assume 

% / 0  0 = ( V o / v )  r , 

we obtain 

_ 26.60lO~037/2V9y-1 
z l o O V gy 

Subsequently it is taken that Y = 2 / 3 .  

To de te rmine  z 2 from Eq. (2), we use the expression for the free energy of an ideal gas of silicon and  

oxygen a toms 

Fdis = -- NkT In 
I(Z Mjr' 

hN A 

3/2 .2sr M o k T' 

aN A 

3 e3V 3 2 ] 

-~-~-Zesi  Zeo �9 
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Since 

2 2 
Zesi Zeo g0si g00 

ZesiO2 g0sio 2 
- -  exp 

QdisMsi02] 
), 

where Qdis is the dissociation energy of an  Si02 molecule, we obtain 

Q~Msio2] 
z z = 1 . 3 3 6 " I 0  - 5 0 1 0 ] 0 3 - ~  exp R T  ) "  

When T2 = Q d i s M s i o 2 / R T  the function z2 has a maximum. Therefore ,  for T > T2, z 2 was taken to be equal to a 

constant. 

T h e  approximations presented lead to the relations 

% g r  n r  z~ '1 2 g r  z2 2 
,o k - - -  ( 9 ~ -  1) - -  "~ + " 2 '  

VMSiO2 VMsio2 1 + z I VMsio2 1 + z 2 

E k  ~.  m 

9 R T  5 R T  zr~ I 

Msio2 2 Msioz 1 + z~l 

2 R r  ) ~2 
Qdis n2 

MSiO2 1 + z 2 

For a more  relastic description, we use the  following expression for the energy: 

G = 

E ,  + 6.5 __RT z~ 1 
MSiO2 

�9 Qdis - -  
1 + zt~ MS~O2 

z~ 2 

1 + z22 

H ere 

E .  = a  1 + a 2 T +  a3 T2,  if T <  T . ,  

E .  = b I + b2T , if T >  T . ,  

T. = 680 K ,  a 1 = - 8.36 �9 103 J / k g ,  a 2 = 66.9 J / (kg  - deg 2) , 

a 3 =  118 .5 .  10 -2 J / ( k g .  deg2),  b I = - 5 5 . 7  J / k g ,  

b 2 = 1.67 �9 103 J / ( k g  �9 deg2).  

For  the best agreement with results  of calculations in the region of an ideal gas we took n I = 0.25 and n2 

= 0.2. 

Calculations based on the procedure  presented above show that at temperatures lower than 5400 K and 

densities lower than I kg /dm 3 the isotherms are nonmonotonic, i.e., reveal a behavior characteristic of van der  

Waals isotherms, and have segments that  correspond to thermodynamically unstable states. The isotherm with T 

= 5386 K has an inflection point (i.e., a critical point) at a specific volume of 1.33 dm3/kg  and a pressure of 0.51 

GPa. It should be noted that at tempera tures  lower than 4500 K the isotherms have segments of negative pressure. 

At higher  temperatures,  the thermal pressure  already compensates for the negative pressure of the cold isotherm. 

As is known, the presence of van der Waals singularities indicates decomposition of the substance into two phases 

whose equil ibrium thermodynamic  paramete rs  are de te rmined  according to Maxwell ' s  rule at the specified 
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Fig. 1. Binodal curve (dashed line) and isotherms (solid lines) of granite for 

temperatures of 3160, 4000, 5000, 6300, 10,000, 32,000, 200,000, and 106 K. 

The isotherms are directed from the bottom upward as the temperature 

increases. P, Pa; p, kg/m 3. 

log P 

12 

10 

8 

6 

4 

2 
0 1 2 3 log 9 

loi 

- 1 0 1 2 3 log P 

Fig. 2. Binodal curve (dashed line) and isoenergetic curves (solid lines) of 

granite for specific energies of 3, 4, 7, 10, 20, 40, 100, 600, and 4000 MJ/kg. 

The isoenergetic curves are directed from the bottom upward as the energy 

increases. T, K. 

temperature. Maxwell's rule enables us to construct a curve (a binodal curve) that bounds the coexistence domain 

of the phases. Figure 1 shows isotherms for a number of temperatures that have horizontal segments within the 

region of two-phase states. The abrupt change in the slope of the isotherms at high densities is due to pressure 

ionization. The latter is caused by deformation of the energy levels with the compression since, in this case, the 

volume of the cell for one atom of the substance is decreased. The deformation of the levels is accompanied by 

pressing of them out into a continuous spectrum, i.e., by ionization. We note that in the vicinity of the critical point 

effects due to incipient dissociation already manifest themselves. Figure 2 shows isoenergetic curves of granite in 

the density-pressure and density-temperature planes. The presence of a maximum on the isoenergetic curves T(p) 

is attributable to the fact that on the isotherms the energy first decreases with compression but subsequently begins 

to increase at increased densities as the zero isotherm is approached. This is associated with the Coulomb 

interaction growing in significance and deformation of the energy spectrum. 

Water. To describe the cold isotherm, we employed experimental data from [8, 9 ] approximated by poly- 

nomials that were subsequently joined to the cold isotherm of the Thomas-Fermi  model. 

In turn, the indicated intervals of densities were broken down into smaller ones, for each its own set of 

coefficients being used. The cold-compression energy was determined from the relation 

where p0 K = 1.17229 kg/dm 3 at T = 0 K. 

Ecold= ~ Pc~d/9, 
POK /o 
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Just for granite, the contribution of the thermal  nuclear component was calculated based on its repre- 

sentation as a sum of terms that allow for the thermal  motion of the nuclei in the condensed state and the processes 

of evaporation and dissociation. A correction for hydrogen bonds was allowed for. 

Since for water  the  Debye  tempera ture  u n d e r  normal condit ions is approximate ly  half  the critical 

temperature ,  the pressure due  to the thermal motion of the nuclei in the condensed state was calculated by the 

formula 

R T  0 D exp ( -  OD/T ) 
ek - ~---~ 5y T 1 = e ~ p ' ( = ~ D / T  ) ' 

where the Debye temperature ,  which depends on the density, was determined as 

0 D = 0 0 e x p  -fidp . 
P0 

Here 0o = 170 K is the Debye  temperature under  normal conditions. For the Griineisen coefficient we used the 

approximations 

2 

.886 - 4.153p + 

y = 0.0282 + 0.9305p,  1 <__ p < 1.2 ; 

7 = 0 . 3 4 3 7 + 0 . 3 5 3 ( 0 . 3 2 + p ) 2 ,  0.1 < p _ <  1 ; 

y = 0 . 4 0 5 2 + 2 9 . 0 7 ( p - 0 . 9 4 9 )  2,  0 < p < 0 . 1  k g / d m  3 

with specially selected coefficients. 

The  quantities zl and  z2 were determined from Eqs. (1) and (2). For nl and  n2 we took values of 0.4 and 

0.5, respectively. 

The  pressure component  due to evaporation was calculated in the following manner: 

RT [ 0 D e x p ( - 0 D / T )  j zt  1 
Pvap - 1 - 57 . . . . . . .  

M V  T 1 - exp ( -  OD/T ) 1 + gll 

2 �9 104 

zl = VT 5 /2  (1 - exp ( -  OD/T)) s " 

For the pressure component due to dissociation, use was made of the expression 

Pdis = 2 -  
R T  z22 

M V  I + z22 ' 

where 

8.6 . 103V 2 ( Qdis M 
z 2 - T 3/2 exp 1 RT , T <- 73 760 K .  

At high temperatures the function z2 was assumed to be equal to a constant. Th e  correction to the pressure that 

allows for hydrogen bonds has the form 
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where  

e H = ~, ( V ) f ( T ) ,  

~p (V) = - 7.08 ( V .  10 - 3  - 0.84467) ( V .  10 -3  - 1.90956) • 

x exp ( -  1.94 ( V -  10 -3  - 1)) ,  

f ( T )  = (85.793aP - 25 .961d 2 + 1.040069d) �9 10 I~ , T _< 353 K"  

f ( T )  = 8.0963 �9 1014d 12"23 T > 353 K" d = I O 0 / T  

In  calculat ing the  cont r ibut ion  of vibrat ional  mot ion in the molecules to the  energy,  we mus t  allow for  

quan tum effects since the  t empera tures  at which the  liquid phase exists are  much  lower  than the character is t ic  

t empera tu res  of in ternal  v ibrat ions .  Therefore  for  the  ene rgy  that is due to the the rma l  mot ion of the  nuclei in the 

c o n d e n s e d  state we used  the  express ion 

oo ex , 1 
Ek -- M T 1 - - - e ~  ( =  0---DTT ) + 2 + T 1 - exp (-- O i / r )  �9 

1 

Here  M is the molecular  we igh t  of water; Ol = 2370 K; 02 = 5510 K; 03 = 5660 K. 

T h e  energy  assoc ia ted  with the process of evapora t ion  was calculated by the  formula  

5 R T  ( 0 D exp ( -  0D/T)  ~ z~ 1 
Evap - /1 - 2 -  

2 M T l - ~ e x p ( T O D / T ) |  - -  z'~ l 
I 
/ 

For  the energy  due  to the  process of dissociat ion,  we used the following express ion:  

= - -  - -  T n 2  . Edis Qdis 2 1 + z 2 

T h e  energy  cor rec t ion  due  to the hyd rogen  b o n d s  has the form 

EH = R ( _  5.25 �9 10 -3T  2 + 6 .8T  - 2.2 �9 103) 1 , T ___ 647 K �9 
M 1 + z ~  1 ' 

E H = 0  , T > 6 4 7  K .  

Fur the rmore ,  we in t roduced  a n o t h e r  correction to the  energy  of the form 

Ead = 3.65 (V - 1) (V - 0 .723)  exp ( -  1.94 (V - 1)) ~0 (T) ; 

_ . 3 f ( T ) ,  T>__353 K" ~p (7") = 1.323 1 0 -  

~, (T) = -- 3.4317416 �9 1011d 3 + 7.78 - 101~ 2 - 2.081248 - 109d,  

I00  
d - T < 353 K.  

T ' 

In all the above formulas ,  the  specific volume V has d imens ions  of m3/kg,  P has d imens ions  of Pa,  and  E - J / kg .  

1022 



logP 

10 

8 

~ i , L I i 

0 1 2 3 log p 
Fig. 3. Binodal curve (dashed line) and isotherms (solid lines) of water for 

temperatures of 400, 600, 4000, 30,000, 200,000, and 1,000,000 K. The 

isotherms are directed from the bottom upward as the temperature increases. 
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Fig. 4. Binodal curve (dashed line) and isoenergetic curves (solid lines) of 

water for specific energies of 1, 1.5, 10, 100, 1000, 10,000, and 100,000 

MJ/kg. The isoenergetic curves are directed from the bottom upward as the 

energy increases. 

Calculations based on the procedure presented show that, for temperatures lower than 652 K and densities 
lower than 1 kg]dm 3, the isotherms are nonmonotonic, i.e., reveal behavior inherent in van der Waals isotherms, 

and have segments that correspond to thermodynamically unstable states. The isotherm with T = 652 K has an 

inflection point (i.e., a critical point) for a specific volume of 3.17 dm3/kg and a pressure of 2.35.107 Pa, which 

corresponds to experimental values. At temperatures lower than 600 K, there are segments of negative pressure on 

the isotherms. At higher temperatures, the thermal pressure already compensates for the negative pressure of the 

cold isotherm. As in the case of granite, the curve of coexistence of the condensed and gaseous phases was 

determined according to Maxwell's rule at the specified temperature. Figure 3 shows isotherms for a number of 

temperatures that have horizontal segments within the region of two-phase states. The calculated boiling point and 

heat of evaporation under normal conditions are also in agreement with the experimental values. We note that, 

unlike granite, in the vicinity of the critical point of water dissociation effects are absent since the temperatures 

are still rather low. Since, to describe the thermal electronic components of the pressure and energy, we employ 

the Thomas-Fermi  model, which describes ionization by pressure, the behavior of the isotherms as the zero 

isotherm is approached is similar to the situation for granite. Figure 4 shows isoenergetic curves of water in the 
density-pressure and densi ty-temperature planes. We can note the presence of a maximum on the isoenergetic 

curves of water, which, as has already been discussed, is associated with the zero isotherm being approached and 

the nonideality growing in importance. 
The work was carried out under the program of the International Science and Technology Center, project 

1323-96. 
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N O T A T I O N  

P, total pressure; Pcold, cold pressure, Pk, Ek, and Fk, pressure, energy, and free energy due to the thermal 

motion of the nuclei; Pe and Ee, thermal electronic pressure and energy; E, total specific energy; Ecoid, cold energy; 

V, specific volume; p, density; T, temperature; Z, average charge; Fcond, free energy of the condensed state; k, 

Boltzmann constant; N, number of particles per gram of the substance; nl and n2, exponents in the expressions 

for the free energy; Zl and z2, statistical sums involved in the expressions for the free energy; Fvap, free energy of 

an ideal gas comprised of molecules; Fdis, free energy of an ideal gas comprised of atoms; P0K, density at the 

absolute zero of temperature; P0, density under normal conditions; Vo, volume under normal conditions; 6, 

compression; c, velocity of sound; m, n, and A, constants; 00, Debye temperature under normal conditions; 0D, 

Debye temperature that depends on the volume; ZesiO2, electron statistical sum of a molecule; h, Planck constant; 

NA, Avogadro number; M, molecular or atomic weight; J, moment of inertia; 0~, 02, and 03, characteristic 

temperatures; ),, Griineisen coefficient; Zes i, electron statistical sum of a silicon atom; Zeo, electron statistical sum 

of an oxygen atom; go, statistical weight of the ground state; Qdis, dissociation energy; R, gas constant; T2, constant; 

E. and T., constants in the expression for the thermal cnergy; ao, al, a2, a3, a4, bl, and b2, constants in the 

approximation dependences; A1, B1, CI, A2, B2, A3, B3, and C3, constants in the expressions for the Griineisen 

coefficient; PH, pressure due to hydrogen bonds; ~o and f, functions that describe the correction to the pressure; 

EH, energy due to hydrogen bonds; Ead, additional correction to the energy; ~p, function that describes the 

additional correction to the energy. Subscripts: k, nuclear; cold, cold; e, electron; cond, condensed; vap, vapor; dis, 
dissociated; H, hydrogen; ad, additional. 
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